

Jueying Lite3

Perception Development Manual(beta)

V2.2.2-0 2024.12.31

DEEP Robotics

 2 / 57

Content

1 Perception System .. 6

2 Preparatory Work .. 7

2.1 Remote Desktop ... 7

2.1.1 Connect ... 7

2.1.2 Troubleshooting ... 8

2.2 Connect Perception Host Via HDMI ... 8

2.2.1 Start GUI Automatically on Boot ... 9

2.2.2 Start tty3 Automatically On Boot .. 10

3 Check and Change ROS version ... 12

4 Depth Camera ... 13

4.1 Camera Driver ... 13

4.2 Camera Test .. 14

4.3 Camera Library librealsense .. 14

4.4 Realsense Development (ROS1) .. 15

4.5 Realsense Development (ROS2) .. 15

5 Message Transformer ... 16

5.1 Introduction .. 16

5.2 Usage ... 17

5.2.1 ROS1 .. 17

5.2.2 ROS2 .. 19

5.3 Package Structure .. 21

DEEP Robotics

 3 / 57

5.3.1 ROS1 .. 21

5.3.2 ROS2 .. 22

6 People Tracking .. 25

6.1 Introduction .. 25

6.2 Usage ... 26

6.3 Development .. 27

7 LiDAR-based SLAM and Navigation (ROS1) ... 29

7.1 Mapping(for v3.1.04 and later) .. 29

7.1.1 Introduction .. 29

7.1.2 Package Structure .. 29

7.1.3 Usage ... 30

7.2 Mapping(for earlier than v3.1.04) .. 35

7.2.1 Introduction .. 35

7.2.2 Package Structure .. 36

7.2.3 Usage ... 36

7.3 Localization & Navigation .. 41

7.3.1 Usage of Point-to-point Navigation .. 41

7.3.2 Usage of Multi-point Navigation ... 43

7.4 Development .. 44

7.4.1 LiDAR Drivers Development .. 44

7.4.2 Development of SLAM Mapping .. 45

7.4.3 Development of Localization and Navigation ... 45

DEEP Robotics

 4 / 57

8 LiDAR-based SLAM and Navigation(ROS2).. 47

8.1 Mapping ... 47

8.1.1 Introduction .. 47

8.1.2 Package Structure .. 47

8.1.3 Usage ... 48

8.2 Localization & Navigation .. 53

8.2.1 Usage of Point-to-point Navigation .. 53

8.2.2 Usage of Multi-point Navigation ... 55

8.3 Development .. 56

8.3.1 LiDAR Drivers Development .. 56

8.3.2 Development of SLAM Mapping .. 57

8.3.3 Development of Positioning and Navigation ... 57

DEEP Robotics

 5 / 57

Document Description
This manual is for users who have some expertise and need to explore, develop and

validate perception algorithms with Jueying Lite3. This manual version applies for

Ubuntu20.

Version Update Description Release Date

V1.0.2-0 First release 2023/6/16

V2.0.1-0 Ubuntu 20 2024/5/15

V2.1.1-0 Mapping&HDMI 2024/7/26

V2.2.2-0 ROS2 2024/12/31

DEEP Robotics

 6 / 57

1 Perception System

Jueying Lite3 Pro/LiDAR uses NVIDIA Jetson Xavier NX as its perception host for

perception algorithms calculation. And the robot also provides some perception

development examples to facilitate user's development.

DEEP Robotics

 7 / 57

2 Preparatory Work

2.1 Remote Desktop

[Caution] If the HDMI connection has been configured according to Section 2.2 before using

the remote desktop, please refer to Section 2.2.2 to restore the configuration and restart the

robot, or the remote desktop cannot be used.

2.1.1 Connect

Users can remotely log in to the perception host through NoMachine.

1. Connect user's development host to the robot's WiFi.

2. Open NoMachine on your PC, and click "New" or "Add" to create a new connection.

a) Select "NX" in "Protocol" option

b) Enter "192.168.1.103" in the "Host" field

c) Select "Password" in "Use password authentication" option

d) Do not check "Use custom proxy configuration for this session" in "Proxy"

e) The rest of the options remain the default

3. Then a new remote icon will appear, as shown in the following screenshot.

DEEP Robotics

 8 / 57

4. Click the icon, and enter the user name ysc and password ’(a single quote), to make

a remote connection.

[Caution] After logging in to the perception host, if desktop is locked or a terminal

command requires you to enter a password, the password is ' (a single quote).

2.1.2 Troubleshooting

1. If the password is incorrect when you enter the password ’, try to switch the IME to

English and enter ’ again.

2. If you experience a white screen after connecting to the remote desktop, please click

the "Settings" button of NoMachine. When the settings page pops out, click "Server

Preferences", then "Updates". Click "Check now" to update the software. After the

update is complete, try to connect again. If NoMachine shows "session negotiation

failed" message after entering the password, you will need to connect to the

perception host via SSH from your computer and repair it.
1

2

3

4

5

ssh ysc@192.168.1.103 # password is ‘ (a single quote)

sudo su

cd /usr/NX/var/db/limits/

ls # list files in /limits

rm xxxxx xxxxxx xxxxxx # delete xxxxx xxxxxx xxxxxx

If still shows "session negotiation failed", repeat the operation and restart the

perception host using sudo reboot.

2.2 Connect Perception Host Via HDMI

Jueying Lite3 Pro/LiDAR supports connection to the perception host desktop via the

HDMI port on the back. The perception host automatically boots into tty3 terminal by

DEEP Robotics

 9 / 57

default. If you want to enter the GUI(Graphic user interface) automatically after the host

is started, you need to make related settings.

2.2.1 Start GUI Automatically on Boot

1. First, use an HDMI cable to connect the perception host to the monitor and boot the

robot. The monitor will show the boot process. If the screen shows "[OK] Started

Session 1 of user ysc. ", the system starts successfully.

[Caution] If the NVIDIA logo or "[OK] Started Session 1 of user ysc. " doesn’t show

on screen after the system starts, but " [Failed] " is displayed, the perception host

hardware may be faulty. Please contact after-sales personnel for help.

2. After successfully booting the robot, use USB interface to connect keyboard, and

press "Ctrl+Alt+F3" to enter the tty3 terminal.

3. Then enter the user name ysc and password ’(a single quote) to log in.

DEEP Robotics

 10 / 57

4. After successfully logging in (pictured above), navigate to "/usr/share/X11/xorg

conf.d" directory and move the "xorg.conf" file to other directory. Specific commands

are as follows:
1

2

cd /usr/share/X11/xorg.conf.d/

sudo mv xorg.conf .. #move the xorg.conf file up to /usr/share/X11

And enter the password ’(single quotes) after "[sudo] password for ysc:".

5. After rebooting the robot, the perception host will automatically enter the GUI. If the

GUI does not appear, it may be because the system has not cleared the previously

configured cache. Please reboot the robot again.

2.2.2 Start tty3 Automatically On Boot

Move "xorg.conf" back to the original path and reboot the robot to restore the tty3 to boot.

Method is as follows:

1. Boot the robot, after entering the GUI, press "Alt+Ctrl+T" to open the terminal window

and enter the following:
1

2

cd /usr/share/X11/

sudo mv xorg.conf xorg.conf.d/ # Move the xorg.conf file to xorg.conf.d/

2. Enter the password ’(single quotes) to move the file. If the move fails, it may be that

the "xorg.conf" file is not under "/usr/share/X11/". Find the actual location of the

"xorg.conf" file and move it to the "/usr/share/X11/xorg.conf.d/" directory.

DEEP Robotics

 11 / 57

3. Reboot the robot. The perception host will enter the tty3 terminal by default while

booting.

DEEP Robotics

 12 / 57

3 Check and Change ROS version

Jueying Lite3 supports both ROS1 and ROS2 since V3.2.1.

1. Run the following command in the terminal to check the ROS version currently in use
1

2

cd /home/ysc/scripts

sudo ./print_ros_version.sh

2. Run the following command in the terminal to switch to ROS1:
1

2

cd /home/ysc/scripts

sudo ./switch_ros_version.sh ros1

3. Run the following command in the terminal to switch to the ROS2:
1

2

cd /home/ysc/scripts

sudo ./switch_ros_version.sh ros2

4. Restart your robot.

[Caution] Do not run ROS1 and ROS2 programs at the same time to avoid unnecessary

resource usage and errors.

DEEP Robotics

 13 / 57

4 Depth Camera

Jueying Lite3 Pro/LiDAR is equipped with Intel RealSense D435i.

4.1 Camera Driver

The depth camera driver Intel RealSense SDK has been installed on the perception host

of Jueying Lite3. Users can open the visualization tool provided by Intel by entering the

following command line in the Terminal:
1 realsense-viewer

Click on the "Info" button for more detailed parameter information, such as the serial

number, firmware version and so on.

[Caution]The realsense-ros package depnds on librealsense v2.50.0, which corresponds to

the Depth Camera firmware version 05.13.00.50. The Version of librealsense is displayed in

the window title, and the Firmware Version is displayed by clicking the “Info” button.

Click the triangle to Expand "Stereo Module" or "RGB Camera" and you can configure

camera parameters such as resolution and frame rate.

DEEP Robotics

 14 / 57

4.2 Camera Test

Before using the camera driver for development, first check whether the depth camera

is connected normally:

1. Make sure that an Intel RealSense D435i is added;

2. Click the on/off switch of the stereo module and the RGB camera. If the depth map

and color map are successfully displayed, it indicates that the depth camera is

properly connected.

4.3 Camera Library librealsense

The Library librealsense and related libraries are compiled based on CUDA and have

been installed in /usr/local/lib and /usr/local/include. When development, you can

include corresponding header files and link corresponding libraries for compilation.

DEEP Robotics

 15 / 57

4.4 Realsense Development (ROS1)

The realsense-ros package of ROS1 is located in the /home/ysc/lite_cog/drivers

/realsense_ws directory, and you can start/stop the relevant functions and check the

status by system service, corresponding to the following commands:
1

2

3

sudo systemctl start realsense

sudo systemctl stop realsense

sudo systemctl status realsense

The commands will use the dr_camera.launch file in the ~/lite_cog/drivers/realsen

se_ws/src/realsense2_camera/launch folder to start the realsense camera.

If you need to modify the startup parameters of the camera, modify the launch file.

4.5 Realsense Development (ROS2)

The realsense-ros package of ROS2 is located in the /home/ysc/ lite_cog_ros2/drivers/

realsense_ws directory, and you can start/stop the relevant functions and check the

status by system service, corresponding to the following commands:
1

2

3

sudo systemctl start realsense_ros2

sudo systemctl stop realsense_ros2

sudo systemctl status realsense_ros2

The commands will use dr_camera_launch.py file in the ~/lite_cog_ros2/drivers/re

alsense_ws /src/realsense2_camera/launch folder to start the realsense camera.

If you need to modify the startup parameters of the camera, modify the launch file

DEEP Robotics

 16 / 57

5 Message Transformer

5.1 Introduction

This package enables the conversion between ROS and UDP messages.

The data transmission between the perception host and the motion host or app is based

on the UDP protocol. Message_transformer can be used as the following:

1. transform UDP messages sent by motion host into ROS topic messages and publish,

and send motion control commands issued by perception host to motion host using

UDP;

2. receive control commands from the app to turn on and off some AI functions on

perception host.

DEEP Robotics

 17 / 57

ROS topics:

Message_transformer will receive the UDP messages from motion host and publish

them to the following topics:
Leg Odometry Data: /leg_odom (nav_msgs::Odometry)

IMU Data: /imu/data (sensor_msgs::Imu)

Joint Data: /joint_states (sensor_msgs::JointState)

Message_transformer will subscribe to the following topics and send the topic

messages to motion host:
Velocity Command: /cmd_vel (geometry_msgs::Twist)

5.2 Usage

5.2.1 ROS1

1. Open a new terminal and enter the following codes to check the status of

message_transformer:
1 sudo systemctl status message_transformer.service

a) If the status is active, message_transformer is running and can be used directly;

b) If the status is inactive, please enter the following command in a terminal to start

message_transformer:
1 sudo systemctl start transfer

c) The command to stop message_transformer:
1 sudo systemctl stop transfer

DEEP Robotics

 18 / 57

d) The command to view the real-time logs of message_transformer:
1 journalctl -fu transfer

2. Open a new terminal and use rostopic command to check the robot status:
1

2

3

rostopic info xxxxxx

rostopic echo xxxxxx

xxxxxx refers to the topic name, and users can subscribe to the topic for development
3. Use the topic /cmd_vel to send velocity commands to motion host, in the format of

geometry_msgs/Twist :
1

2

3

4

5

6

7

8

geometry_msgs/Vector3 linear # Linear velocity (m/s)

float64 x # Longitudinal velocity: positive value when going

forward

float64 y # Lateral velocity: positive value when going left

float64 z # Invalid parameter

geometry_msgs/Vector3 angular # Angular velocity (rad/s)

float64 x # Invalid parameter

float64 y # Invalid parameter

float64 z # Angular velocity: positive value when turning left
a) Users can publish to this topic in C++ or Python programs compiled based on

ROS (refer to http://wiki.ros.org/ROS/Tutorials for learning about ROS). Users

can also publish messages to the topic for debugging in terminal. Please first

type the following codes in terminal:
1 rostopic pub /cmd_vel geometry_msgs/Twist

b) Before pressing Enter, add a space after the commands and press Tab key to

automatically complement the message type as follows:
1

2

3

4

5

6

7

8

9

rostopic pub /cmd_vel geometry_msgs/Twist "linear:

x: 0.0

y: 0.0

z: 0.0

angular:

x: 0.0

y: 0.0

z: 0.0

"

http://wiki.ros.org/ROS/Tutorials

DEEP Robotics

 19 / 57

c) Use the left/right arrow keys on the keyboard to move the cursor, modify the

velocity values, and then add -r 10 after geometry_msgs/Twist to specify the

posting frequency (10Hz) as follows:
1

2

3

4

5

6

7

8

9

rostopic pub /cmd_vel geometry_msgs/Twist -r 10 "linear:

x: 0.2

y: 0.1

z: 0.0

angular:

x: 0.0

y: 0.0

z: 0.3

"

d) Press Enter key to run and publish the topic messages.

e) Message_transformer can subscribe to this topic, transform the topic messages

into UDP messages and send them to motion host.

f) After the transmission process is normally opened, make the robot stand up and

start the auto mode in the APP Settings page, and the robot can act at the above

speed.

[Caution] Please debug in an open area to prevent damage to people or objects. In case

of an emergency, press the STOP button in time, or turn off the auto mode.

5.2.2 ROS2

1. Open a new terminal and enter the following codes to check the status of

message_transformer:
1 sudo systemctl status transfer_ros2

DEEP Robotics

 20 / 57

a) If the status is active, message_transformer is running and can be used directly;

b) If the status is inactive, please enter the following command in a terminal to start

message_transformer:
1 sudo systemctl start transfer_ros2

c) The command to stop message_transformer:
1 sudo systemctl stop transfer_ros2

d) The command to view the real-time logs of message_transformer:
1 journalctl -fu transfer_ros2

2. Open a new terminal and use ros2 topic command to check the robot status:
1

2

3

ros2 topic info xxxxxx

ros2 topic echo xxxxxx

xxxxxx refers to the topic name, and users can subscribe to the topic for development
3. Use the topic /cmd_vel to send velocity commands to motion host, in the format of

geometry_msgs/Twist :
1

2

3

4

5

6

7

8

geometry_msgs/msg/Vector3 linear # Linear velocity (m/s)

float64 x # Longitudinal velocity: positive value when going

forward

float64 y # Lateral velocity: positive value when going left

float64 z # Invalid parameter

geometry_msgs/mag/Vector3 angular # Angular velocity (rad/s)

float64 x # Invalid parameter

float64 y # Invalid parameter

float64 z # Angular velocity: positive value when turning left
a) Users can publish to this topic in C++ or Python programs compiled based on

ROS2 (refer to https://docs.ros.org/en/foxy/Tutorials.html for learning about

https://docs.ros.org/en/foxy/Tutorials.html

DEEP Robotics

 21 / 57

ROS). Users can also publish messages to the topic for debugging in terminal.

Please first type the following codes in terminal:
1 ros2 topic pub -r 10 /cmd_vel geometry_msgs/msg/Twist "{linear: {x: 0.2, y: 0.0, z:

0.0}, angular: {x: 0.0, y: 0.0, z: 0.0}}"

b) Press Enter key to run and publish the topic messages.

c) Message_transformer can subscribe to this topic, transform the topic messages

into UDP messages and send them to motion host.

d) After the transmission process is normally opened, make the robot stand up and

start the auto mode in the APP Settings page, and the robot can act at the above

speed.

[Caution] Please debug in an open area to prevent damage to people or objects. In case

of an emergency, press the STOP button in time, or turn off the auto mode.

5.3 Package Structure

5.3.1 ROS1

/home/ysc/lite_cog/transfer/src

├── CMakeLists.txt

└── message_transformer

 ├── CMakeLists.txt

├── include

 │ ├── protocol.h

│ └── sensor_logger.h

 ├── launch

 │ └── message_transformer.launch

├── msg

 │ ├── SimpleCMD.msg

 │ └── ComplexCMD.msg

 ├── package.xml

 └── src

 ├── nx2app.cpp

 ├── qnx2ros.cpp

 ├── ros2qnx.cpp

DEEP Robotics

 22 / 57

 └── sensor_checker.cpp

1. nx2app.cpp is mainly used for UDP communication between perception host and

app. The app sends command code to perception host and nx2app.cpp will execute

tasks according to the received command. The commands sent by app are

structured as follows:
1

2

3

4

5

6

class SimpleCMD{

public:

 int32_t cmd_code;

 int32_t cmd_value;

 int32_t type;

};
2. qnx2ros.cpp is used to receive the data sent by motion host and transform it into

ROS topic messages.
1

2

3

4

5

6

leg_odom_pub_ = nh.advertise<geometry_msgs::PoseWithCovarianceStamped>("leg_odom", 1);

leg_odom_pub2_ = nh.advertise<nav_msgs::Odometry>("leg_odom2", 1);

joint_state_pub_ = nh.advertise<sensor_msgs::JointState>("joint_states", 1);

imu_pub_ = nh.advertise<sensor_msgs::Imu>("/imu/data", 1);

handle_pub_ = nh.advertise<geometry_msgs::Twist>("/handle_state", 1);

ultrasound_pub_ = nh.advertise<std_msgs::Float64>("/us_publisher/ultrasound_distance",

1);

3. ros2qnx.cpp can subscribe to the topic published by other nodes, transform the

messages into UDP data and send them to motion host.
1

2

3

4

5

6

7

ros::Subscriber vel_sub = nh.subscribe("cmd_vel", 1, &ROS2QNX::CmdVelCallback,

&ros2qnx);

ros::Subscriber vel_sub2 = nh.subscribe("cmd_vel_corrected", 1,

&ROS2QNX::CmdVelCallback, &ros2qnx);

ros::Subscriber simplecmd_sub = nh.subscribe("simple_cmd", 1,

&ROS2QNX::SimpleCMDCallback, &ros2qnx);

ros::Subscriber complexcmd_sub = nh.subscribe("complex_cmd", 1,

&ROS2QNX::ComplexCMDCallback, &ros2qnx);

5.3.2 ROS2
ysc@lite:~/lite_cog_ros2/transfer/src$ tree .

├── transfer

│ ├── CMakeLists.txt

DEEP Robotics

 23 / 57

│ ├── include

│ │ └── protocol.hpp

│ ├── launch

│ │ └── transfer_launch.py

│ ├── package.xml

│ └── src

│ ├── Jetson2App.cpp

│ ├── Jetson2Motion.cpp

│ ├── SensorChecker.cpp

│ └── SensorsLogger.hpp

└── transfer_interfaces

 ├── CMakeLists.txt

 ├── msg

 │ ├── MotionComplexCMD.msg

 │ └── MotionSimpleCMD.msg

 └── package.xml

1. Jetson2App.cpp is mainly used for UDP communication between perception host

and app. The app sends command code to perception host and Jetson2App.cpp

will execute tasks according to the received command. The commands sent by app

are structured as follows:
1

2

3

4

5

6

class SimpleCMD{

public:

 int32_t cmd_code;

 int32_t cmd_value;

 int32_t type;

};

2. The Jetson2Motion.cpp contains two classes: MotionReceiver and MotionSender.

The MotionReceiver is used to receive the data reported by the motion host and

convert it into a ROS topic message for other function packages to use.
1

2

3

4

5

6

leg_odom_pub_ =

create_publisher<geometry_msgs::msg::PoseWithCovarianceStamped>("leg_odom", 10);

leg_odom_pub2_ = create_publisher<nav_msgs::msg::Odometry>("leg_odom2", 10);

joint_state_pub_ = create_publisher<sensor_msgs::msg::JointState>("joint_states", 10);

imu_pub_ = create_publisher<sensor_msgs::msg::Imu>("/imu/data", 10);

handle_pub_ = create_publisher<geometry_msgs::msg::Twist>("/handle_state", 10);

ultrasound_pub_ =

create_publisher<std_msgs::msg::Float64>("/us_publisher/ultrasound_distance", 10);

DEEP Robotics

 24 / 57

MotionSender subscribes to topics published by other feature pack nodes, converts

them into UDP message packages and sends them to the motion host, and the topics

subscribed to are as follows:
1

2

3

4

5

6

7

8

9

10

11

12

cmd_vel_sub_ = create_subscription<geometry_msgs::msg::Twist>(

 "cmd_vel", 10,

 std::bind(&MotionSender::CmdVelCallback, this, std::placeholders::_1));

cmd_vel_corrected_sub_ = create_subscription<geometry_msgs::msg::Twist>(

 "cmd_vel_corrected", 10,

 std::bind(&MotionSender::CmdVelCallback, this, std::placeholders::_1));

simplecmd_sub = create_subscription<transfer_interfaces::msg::MotionSimpleCMD>(

 "simple_cmd", 10,

 std::bind(&MotionSender::SimpleCMDCallback, this, std::placeholders::_1));

complexcmd_sub = create_subscription<transfer_interfaces::msg::MotionComplexCMD>(

 "complex_cmd", 10,

 std::bind(&MotionSender::ComplexCMDCallback, this, std::placeholders::_1));

DEEP Robotics

 25 / 57

6 People Tracking

6.1 Introduction

This case first utilizes DeepStream, YOLOv8 and TensorRT to recognize and track the

target individuals in the scene and then calculates the target position and transmits it to

the motion host to enable the robot to follow the target people. Hardware decoding

based on DeepStream is used to obtain an h264-encoded 720p resolution rtsp video

stream, and TensorRT is used to accelerate the Yolov8 human detection model to

recognize people in open scenes, enabling it to recognize people at approximately 20

fps and track them at around 10 fps.

This case is divided into two parts: recognition and tracking.

1. Recognition algorithm performs deep learning neural network for visual recognition

to find the position of human body in the picture. When multiple bodies appear in

the picture, all the human bodies in the frame are first recognized. Then, the features

of the human body identified in each frame of video are extracted based on deep

learning and compared one by one to determine the trajectory of the same person in

the previous and subsequent frames.

2. Tracking algorithm allows users to choose the target human they want the robot to

follow in the screen. The robot can achieve real-time targeting and continuous

tracking. The recognition algorithm can determine the direction and distance of

people from the robot so that the robot can respond accordingly (translate or

DEEP Robotics

 26 / 57

rotate). Its velocity can also be adjusted in real-time depending on the distance

between the robot and the person being tracked.

a) Too close: When the target is too close, the robot will stop to prevent a collision.

b) Close: When the target is close, the robot will dynamically slow down in real-

time to get close to the target.

c) Far: The robot will move at maximum speed when the target is far away.

The source codes of yolov8 and sdk_hub used in this case are from ultralytics and hub-

sdk. Also you can search materials about yolov8 on the Internet.

6.2 Usage

[Caution]When the program is started, the initialization of video decoding and deep learning

inference environment are required, which takes about 40s. If the function cannot be started

for a long time, connect the controller to the robot to check whether the video stream works

properly.

1. Open a Terminal and enter the following command to start the program:
1

2

3

cd /home/ysc/lite_cog/track/src # for ROS1

cd /home/ysc/lite_cog_ros2/track/src # for ROS2

python3 run_tracker.py
2. Use the app to make the robot stand up and start the auto mode.

3. When people appear, the system will assign numbers to all the people who has been

identified and displayed the numbers on the screen. Use the keyboard to enter the

assigned number of the person you want to follow and press enter to confirm.

[Caution] When entering a target number, kindly ensure that the video window is on top.

4. The robot will then track and identify the target.

https://github.com/ultralytics/ultralytics
https://github.com/ultralytics/hub-sdk
https://github.com/ultralytics/hub-sdk

DEEP Robotics

 27 / 57

5. You can press Enter key to reset the target when tracking, or when the target is lost

and "Miss Object" is displayed.

6. Press Ctrl+c to end the program.

6.3 Development

This case provides two packages in the ~/lite_cog/track and ~/lite_cog_ros2/track

workspaces for different ROS versions, and the difference is only the kUseRos1Transfer

= True line of RobotController.py in the /src/RobotController folder, which is used to

specify whether to use ROS1 or ROS2 for message sending. ROS1 is used when the value

is True, and ROS2 is used when the value is False.

The structure of package people_tracking is as below:
People_tracking

├── model

│ ├── export_engine.sh

│ ├── yolov8n_amd.engine

│ ├── yolov8n_arm.engine

│ ├── yolov8n.onnx

│ └── yolov8n.pt

└── src

 ├── GStreamerWrapper

 │ └── GStreamerWrapper.py

├── hub_sdk

 ├── RobotController

 │ ├── FpsCounter

 │ │ └── FpsCounter.py

 │ ├── RobotController.py

 │ ├── ROSTransfer

 │ │ ├── ROS1Transfer.py

 │ │ ├── ROS2Transfer.py

 │ │ └── TransferConstants.py

 │ └── YoloWrapper

 │ ├── CocoTypeId.py

 │ └── YoloWrapper.py

 ├── run_tracker.py

http://yolov8n.pt/

DEEP Robotics

 28 / 57

 ├── test

 │ ├── pull.py

 │ ├── pull.sh

 │ └── yolov8.py

 └── ultralytics

1. run_tracker.py is the main program.

2. GStreamerWrapper is a DeepStream-based GStreamer hardware decoder used to

obtain RTSP video streams.

3. The main operation logic of RobotController.py is reflected in its Run() function,

which is used to identify the human body in the image obtained from the video

stream, and then send motion instructions.

4. ultralytics is an open source Yolov8 program package, which is used to reason and

track image frames obtained from video streams, and is the operation dependency

of YoloWrapper in RobotController. The ultralytics/cfg folder is the storage address

of various Yolov8 configuration files. Each configuration file has been fully

commented.

5. sdk_hub is the open source sdk_hub program package, which is the operation

dependency of the Yolov8 package.

DEEP Robotics

 29 / 57

7 LiDAR-based SLAM and Navigation (ROS1)

[Caution] This section applies to ROS1, so please refer to “3 Check and Change ROS version”

to check the ROS version currently in use.

This case uses LiDAR and imu to achieve mapping (indoor and outdoor scenes),

localization, navigation, and obstacle avoidance on perception host. The robot can

achieve real-time localization and online 3D mapping. When localizing in a map, by

fusing IMU, it will not lose its location due to falling or high-speed rotation. Map-based

navigation is achieved using the move_base package.

[Caution] Before mapping, please check "～/Desktop/version_log.txt" document. If the

version is v3.1.04 or later, please refer to 7.1 for mapping. If the version is earlier than

v3.1.04, please refer to 7.2 for mapping.

7.1 Mapping(for v3.1.04 and later)

7.1.1 Introduction

This case uses SLAM Mapping released on Github by Dr. Gao Xiang's team. The main

operation process and data flow diagram are shown as below:

7.1.2 Package Structure

The mapping package is located in the "~/lite_cog/slam/src" path and contains three

packages: faster-lio, pcd_2_gridmap and map_server. The faster-lio package is

responsible for building 3D point cloud maps (.pcd). The pcd_2_gridmap package is

https://github.com/gaoxiang12/faster-lio

DEEP Robotics

 30 / 57

responsible for converting 3D point cloud maps (.pcd) to grid maps (.pgm) and

publishing them. The map_server package is responsible for saving grid maps (.pgm).

7.1.3 Usage

[Caution] Before mapping, please check whether there is a previously created map in the

/home/ysc/lite_cog/system/map folder. If so, you can move it to another folder to avoid

overwriting.

[Caution] Mapping requires more computing resources, so please turn off all the AI options

on the app first.

1. Open the Terminal and enter the following to start the LiDAR driver (Choose one

script of the two):
1

2

3

cd /home/ysc/lite_cog/system/scripts/lidar

./start_lslidar.sh #Leishen Lidar

./start_livox.sh #livox lidar
If the LiDAR driver node fails to start, check whether the LiDAR has connected to the

perception host using the following command:
1 ping 192.168.1.201

[Caution] This terminal should be kept running during mapping.

2. Start the mapping program:

DEEP Robotics

 31 / 57

a) The script start_slam.sh, which starts the mapping program, is in the path

/home/ysc/lite_cog/system/scripts/slam and reads as follows:
1

2

3

4

5

6

7

8

9

10

11

12

13

#!/bin/sh

Open the mapping program

gnome-terminal -x bash -c "source /home/ysc/lite_cog/slam/devel/setup.bash;

roslaunch faster_lio mapping_c16.launch; read -p 'Press any key to exit...'"

open a terminal used for creating grid_map

gnome-terminal -x bash -c "bash /home/ysc/lite_cog/system/scripts/slam/gridmap.sh;

read -p 'Press any key to exit...'"

open a terminal used for saving grid map

gnome-terminal -x bash -c "bash

/home/ysc/lite_cog/system/scripts/slam/save_map.sh; read -p 'Press any key to

exit...'"

b) After logging into the perception host desktop using NoMachine and remotely

controlling the robot to stand up, open a Terminal and enter the following

command to start the mapping program using the script:
1

2

cd /home/ysc/lite_cog/system/scripts/slam

./start_slam.sh

c) After executing the above command, the visualization tool RViz will be launched,

and three terminal tabs will be generated in the terminal running the script

start_slam.sh, respectively, to run fast-lio, generate grid map and save grid map.

DEEP Robotics

 32 / 57

3. Operate the robot and guide it around the designated area to construct the map.

When taking turns, please slow down. Also, be mindful of LiDAR's blind spots and

keep the robot at a minimum distance of 0.5 meters from any walls.

4. After finishing scanning the designated area, check whether the point cloud map

matches the real environment in RViz.

5. Find the corresponding tab page of faster-lio program after completing the map

scanning, press "Ctrl+C" to stop mapping, the program will automatically save the

3D point cloud file (.pcd) to the ~/lite_cog/system/map directory, and display the

average processing time (for reference only). Press Enter to close this tab page.

6. After saving the 3D point cloud file (.pcd) successfully, find the tab page as shown in

the following figure, enter 1 and press Enter key. After a while, pcd_2_gridmap

package will be called to convert the point cloud map into a grid map, and the next

step can be carried out when the RViz window pops up and displays the grid map.

DEEP Robotics

 33 / 57

7. To save the grid map, first, select the Terminal that displays "when you want to save

the grid map". Next, enter the number 2 and press Enter to call map_server. After

that, map files will be saved to /home/ysc/lite_cog/system/map, including the .yaml

file, .pgm file, and .pcd file.

8. If the grid map (.pgm) is not completely in line with the actual environment or users

need to manually delimit passable areas, GIMP Image Editor can be used to edit it.

Open a Terminal and type gimp to open GIMP Image Editor and drag the grid map

(.pgm) into it.

http://wiki.ros.org/map_server

DEEP Robotics

 34 / 57

a) Toolbox can be opened by choosing [Windows] – [New Toolbox] in the top menu

bar if it is not displayed.

b) Foreground Color specifies the color of Pencil and Background Color specifies the

color of Eraser. In the grid map, the black area is not passable, the white area is

passable and the gray area is unknown. Users can erase the noise or add a virtual

wall with Pencil or Eraser.

c) Save the modified map by clicking [File] – [Overwrite usr_map.pgm] to cover the

origin file and it is not necessary to save it again when closing the editor.

9. Please close all Terminals with ctrl+c after completing all operations to avoid

affecting subsequent processes.

10. The map files will by default be saved in /home/ysc/lite_cog/system/map directory.

If the path or name of map files is changed, please follow the steps below to ensure

that localization and navigation program can call the map correctly:

DEEP Robotics

 35 / 57

a) Update the path of map file(.pgm) in the corresponding .yaml file, and modify

the file name of .yaml file to keep same with the .pgm file:
1

2

3

image:/home/ysc/lite_cog/system/map.pgm // path of map file (.pgm)

resolution:0.050000

...

b) Go into the directory ~/lite_cog/nav/src/hdl_localization/launch and configure

the name and path of map files in the file local_rslidar_imu.launch.
1

2

3

4

5

6

7

8

<arg name="map_name" default="lite3" /> //Define Map File Name

...

<node name="MapServer" pkg="map_server" type="map_server"

args="/home/ysc/lite_cog/system/map/$(arg map_name).yaml"/>

...

...

<param name="globalmap_pcd" value="/home/ysc/lite_cog/system/map/$(arg

map_name).pcd" />

...

7.2 Mapping(for earlier than v3.1.04)

7.2.1 Introduction

This case uses 6DOF SLAM released on Github by Kenji Koide from Toyohashi University

of Technology. The main operation process is shown below:

The corresponding data flow diagram is shown below:

https://github.com/koide3/hdl_graph_slam.git

DEEP Robotics

 36 / 57

7.2.2 Package Structure

/home/ysc/lite_cog/slam

├── build

├── devel

├── src

│ ├── CMakeLists.txt

│ ├── fast_gicp

│ ├── hdl_graph_slam

│ ├── map_server

│ └── ndt_omp

└── version

The hdl_graph_slam package builds the map.

7.2.3 Usage

[Caution] Before mapping, please check whether there is a previously created map in the

/home/ysc/lite_cog/system/map folder. If so, you can move it to another folder to avoid

overwriting.

[Caution] Mapping requires more computing resources, so please turn off all the AI options

on the app first.

1. Open the Terminal and enter the following to start the LiDAR driver (Choose one

script of the two):
1

2

3

cd /home/ysc/lite_cog/system/scripts/lidar

./start_lslidar.sh #Leishen Lidar

./start_livox.sh #Livox Lidar
If the LiDAR driver node fails to start, check whether the LiDAR has connected to the

perception host using the following command:
1 ping 192.168.1.201 #Both lidar IPs are 192.168.1.201

2. Start the mapping program:

a) The script start_slam.sh, which starts the mapping program, is in the path

/home/ysc/lite_cog/system/scripts/slam and reads as follows:
1 #!/bin/sh

DEEP Robotics

 37 / 57

2

3

4

5

6

7

8

9

10

11

12

13

14

15

open rviz

gnome-terminal -x bash -c "cd /home/ysc/lite_cog/slam; source devel/setup.bash;

roslaunch hdl_graph_slam mapping_rslidar_indoor.launch;"

open rviz

gnome-terminal -x bash -c "bash /home/ysc/lite_cog/system/scripts/slam/rviz.sh"

open a terminal used for creating grid_map

gnome-terminal -x bash -c "bash /home/ysc/lite_cog/system/scripts/slam/gridmap.sh"

open a terminal used for saving map

gnome-terminal -x bash -c "bash /home/ysc/lite_cog/system/scripts/slam/save_map.sh"

b) After logging into the perception host desktop using NoMachine and remotely

controlling the robot to stand up, open a Terminal and enter the following

command to start the mapping program using the script:
1

2

cd /home/ysc/lite_cog/system/scripts/slam

./start_slam.sh

c) After executing the above command, five terminal Windows will be generated,

respectively used for running the scripts, running the mapping program, opening

Rviz, creating grid map, and saving map. (In the picture below, the window in left

side is running the LiDAR driver window, the right side is running the mapping

script) :

DEEP Robotics

 38 / 57

3. If you want to see the effect of mapping in real time, find the terminal used for

opening RViz (as shown below), input the number 1 and press Enter, then the RViz

visualization interface will be opened. Opening this interface will reduce the

performance of mapping, and if you are not satisfied with the effect of mapping,

please try not to open Rviz and close the NoMachine remote interface when mapping

to save computing resources).

4. Operate the robot and guide it around the designated area to construct the map.

When taking turns, please slow down. Also, be mindful of LiDAR's blind spots and

keep the robot at a minimum distance of 0.5 meters from any walls.

5. After finishing scanning the designated area, check whether the point cloud map

matches the real environment (if the RViz has not been opened before, open it at this

time). If the area is large or there is a closed loop in the real environment (such as

circling around a house), please check the map whether it is a closed loop consistent

with the real environment. If it is not a closed loop, you can circle again to complete

the loop-closure detection.

6. To convert the point cloud map into a grid map after completing the map scanning,

first, select the Terminal that displays "when you want to create the grid map" as

shown in the figure below. Then, enter the number 2 and press Enter to call

DEEP Robotics

 39 / 57

octomap. After this, remotely control the robot to walk a short distance. Doing so will

convert the point cloud map into a grid map.

7. To save the grid map, first, select the Terminal that displays "when you want to save

the grid map and the point cloud". Next, enter the number 3 and press Enter to call

map_server. After that, remotely control the robot to walk a short distance. Map files

will be saved to /home/ysc/lite_cog/system/map, including the .yaml file, .pgm file,

and .pcd file.

8. If the grid map (.pgm) is not completely in line with the actual environment or users

need to manually delimit passable areas, GIMP Image Editor can be used to edit it.

Open a Terminal and type gimp to open it and drag the grid map (.pgm) into GIMP

Image Editor.

http://octomap.github.io/
http://wiki.ros.org/map_server

DEEP Robotics

 40 / 57

a) Toolbox can be opened by choosing [Windows] – [New Toolbox] in the top menu

bar if it is not displayed.

b) Foreground Color specifies the color of Pencil and Background Color specifies the

color of Eraser. In the grid map, the black area is not passable, the white area is

passable and the gray area is unknown. Users can erase the noise and add a

virtual wall with Pencil or Eraser.

c) Save the modified map by clicking [File] – [Overwrite usr_map.pgm] to cover the

origin file and it is not necessary to save it again when closing the editor.

9. Please close all Terminals with ctrl+c after completing all operations to avoid

affecting subsequent processes.

10. The map files will by default be saved in /home/ysc/lite_cog/system/map. If the path

or name of map files is changed, please follow the steps below to ensure that

localization and navigation program can call the map correctly:

a) Update the path of map file(.pgm) in the corresponding .yaml file, and modify

the file name of .yaml file to keep same with the .pgm file:
1

2

3

image:/home/ysc/lite_cog/system/map.pgm // path of map file (.pgm)

resolution:0.050000

...

b) Go into the directory ~/lite_cog/nav/src/hdl_localization/launch and configure

the name and path of map files in the file local_rslidar_imu.launch.
1

2

3

4

5

6

<arg name="map_name" default="lite3" /> //Define Map File Name

...

<node name="MapServer" pkg="map_server" type="map_server"

args="/home/ysc/lite_cog/system/map/$(arg map_name).yaml"/>

...

...

DEEP Robotics

 41 / 57

7

8

<param name="globalmap_pcd" value="/home/ysc/lite_cog/system/map/$(arg

map_name).pcd" />

...

7.3 Localization & Navigation

This case is based on LiDAR and IMU to implement localization and navigation. The

localization algorithm used in this case is hdl_localization algorithm.

[Caution] The LIDAR driver needs to be running during localization and navigation (refer to

7.1.2).

7.3.1 Usage of Point-to-point Navigation

1. Open a Terminal and enter the following codes to run the LiDAR driver(If the driver

has already been started, there is no need to start it again):
1

2

3

cd /home/ysc/lite_cog/system/scripts/lidar

./start_lslidar.sh #Leishen LiDAR

./start_livox.sh #Livox LiDAR
2. Open a terminal and enter the following command to start the node.

1

2

cd /home/ysc/lite_cog/system/scripts/nav

./start_nav.sh

3. After RViz is opened, initialize the robot location:

a) Click the "2D Pose Estimate" button in the top toolbar;

b) According to the actual location and orientation of the robot, press the mouse left

button and drag to pull out an arrow at the corresponding location on the grid

map;

c) If the positioning initialization is successful, the point cloud and grid map will

coincide, and the terminal print "initial pose received!!" ;

https://github.com/koide3/hdl_localization.git

DEEP Robotics

 42 / 57

d) If the laser point cloud does not coincide with the grid map, the initial position is

not correct, please re-operate；

e) If the point cloud does not appear on the map and the terminal prints "globalmap

has not been received!", please close the program with ctrl+c and try again.

f) The base_link coordinate system is the robot coordinate system, and the x-axis

(red) indicates the robot orientation.

[RViz Usage Tips] To manipulate the map on RViz, you can zoom in and out by using the

mouse wheel. For rotation, you can drag the left mouse button. Meanwhile, to pan and

drag the map, you need to hold Shift key and drag the left mouse button.

4. After initializing the location, a target point can be given according to a similar

method:

a) Click the "2D Nav Goal" button in the top toolbar.

b) Press the left mouse button and drag on the grid map to specify a navigation goal

and its orientation.

DEEP Robotics

 43 / 57

c) If successfully specifying a navigation goal, the planned path will be computed

and shown. Else, start again from the first step.

5. Open the auto mode on the app and make the robot stand up, the robot will

navigate along the route computed by the global planning, while using local

planning to avoid dynamic obstacles, until it successfully arrives at the destination.

[Caution] To avoid the robot body being classified as an obstacle, only items that exceed a

certain height will be identified as obstacles.

7.3.2 Usage of Multi-point Navigation

This case also provides the function to make the robot autonomously arrive at a series

of waypoints in order.

[Caution] Before recording a new route, please check if there are any waypoint files saved

before in the/home/ysc/lite_cog/pipeline/src/pipeline/data folder, and move them to

other folders, to avoid the overwriting.

1. Refer to steps 1 to 3 in 7.2.1 to start the navigation program and initialize the

localization, then open a terminal and run the following command to start the

pipeline which used for recording a route (consists of many waypoints in sequence):
1

2

3

cd /home/ysc/lite_cog/pipeline/src/pipeline_tracking/tools

python3 location_record.py # for opening a Chinese interface(left window below)

python3 location_record_en.py # for opening an English interface(right window below)

DEEP Robotics

 44 / 57

2. First the robot should be controlled to arrive at the first waypoint and stand still.

After the point cloud shown in the RViz stops moving, input 1 in the textbox of

[location number]. Then click [get location] and the location and orientation

information of the robot will be printed. Then click [record location] and a record file

named 1.json will appear in /home/ysc/lite_cog/pipeline/src/pipeline/data. Then

remote control the robot to the next waypoint, repeat the above operation until all

the waypoints are recorded, and then close the window. If it is closed accidentally

during recording, just open it again (referring to the first step).

3. Open a terminal, run the following command, and turn on auto mode on the app.

The robot will go to the nearest waypoint and navigate in a loop according to the

location number.
1

2

3

4

cd /home/ysc/lite_cog/pipeline

source devel/setup.bash

cd /home/ysc/lite_cog/pipeline/src/pipeline_tracking/scripts

python3 Task.py

4. Once the previous operation is finished, you can simply start the navigation program

and initialize the localization referring to 7.2.1, and execute step 3 to make the robot

follow the previously recorded waypoints for circular navigation when using it again.

7.4 Development

7.4.1 LiDAR Drivers Development

LiDAR drivers are located in the ~/lite_cog/driver/leishen_ws/ or ~/lite_cog/driver/

mid360_ws/. Users can read the source code for development.

DEEP Robotics

 45 / 57

7.4.2 Development of SLAM Mapping

The SLAM mapping program is launched through the mapping_rslidar_indoor.launch

file in the /home/ysc/lite_cog/slam/src/hdl_graph_slam/launch folder, which mainly

contains point cloud preprocessing parameters, point cloud registration algorithm

parameters, and g2o graph optimization algorithm parameters, which can be adjusted

by the user.

7.4.3 Development of Localization and Navigation

1. Development of Localization: The localization program is started from the

local_rslidar_imu.launch file in the ~/lite_cog/nav/src/hdl_localization/launch

folder, which mainly contains the point cloud preprocessing parameters and point

cloud registration parameters, which can be adjusted by the user.

2. Development of Navigation: In ~/lite_cog/nav/src/navigation/config directory, there

are 6 .yaml files that can be adjusted.

a) common_costmap_params.yaml: contains the parameters the local cost map

and the global cost map used in common;

b) global_costmap_params.yaml: contains the parameters of the global cost map;

c) local_costmap_params.yaml: contains the parameters of the local cost map;

d) global_planner_params.yaml: contains the parameters of the global planner;

e) teb_ local_planner_params.yaml: contains the parameters of the teb local

planner;

f) move_base_params.yaml: contains the parameters of the move_base package.

DEEP Robotics

 46 / 57

Users can find the relevant description and source codes of some packages:

global_planner、teb_local_planner、costmap_2d、move_base.

http://wiki.ros.org/global_planner?distro=noetic
http://wiki.ros.org/teb_local_planner
http://wiki.ros.org/costmap_2d
http://wiki.ros.org/move_base

DEEP Robotics

 47 / 57

8 LiDAR-based SLAM and Navigation(ROS2)

[Caution] This section applies to ROS2, so please refer to “3 Check and Change ROS version”

to check the ROS version currently in use.

This case uses LiDAR and imu to achieve mapping (indoor and outdoor scenes),

localization, navigation, and obstacle avoidance on perception host. The robot can

achieve real-time localization and online 3D mapping. When localizing in a map, by

fusing IMU, it will not lose its location due to falling or high-speed rotation. Map-based

navigation is achieved using the bt_navigator package.

8.1 Mapping

8.1.1 Introduction

This case uses SLAM Mapping released on Github by Dr. Gao Xiang's team. The main

operation process and data flow diagram are shown as below:

8.1.2 Package Structure
ysc@lite:~/lite_cog_ros2/slam/src$ tree .

.

├── faster-lio

├── map_server

└── pcd2grid

The faster-lio package is responsible for building PCD maps, the pcd2grid package is

responsible for converting PCD maps into grid maps and publishing them, and the

map_server package is responsible for saving grid maps.

https://github.com/gaoxiang12/faster-lio

DEEP Robotics

 48 / 57

8.1.3 Usage

[Caution] Before mapping, please check whether there is a previously created map in the

/home/ysc/lite_cog_ros2/system/map folder. If so, you can move it to another folder to

avoid overwriting.

[Caution] Mapping requires more computing resources, so please turn off all the AI options

on the app first.

1. Open the Terminal and enter the following commands to start the LiDAR driver

(Choose one scripts of the two):
1

2

cd ~/lite_cog_ros2/system/scripts/lidar

./start_lslidar.sh #Leishen Lidar

3 ./start_livox.sh #Livox Lidar

If the LiDAR driver node fails to start, check whether the LiDAR has connected to the

perception host using the following command:
1 ping 192.168.1.201 #Both lidar IPs are 192.168.1.201

2. Start the point cloud mapping program:

a) The script start_slam.sh to start the mapping program is located in the

~/lite_cog_ros2/system/scripts/slam directory and reads as follows:
1

2

3

4

5

6

7

8

9

10

#!/bin/sh

start rviz

gnome-terminal -x bash -c "source /home/ysc/lite_cog_ros2/slam/install/setup.bash;

ros2 launch faster_lio mapping_c16.launch.py; read -p 'Press Enter to exit...'"

#start a terminal for generating grid_map

gnome-terminal -x bash -c "bash

/home/ysc/lite_cog_ros2/system/scripts/slam/gridmap.sh; read -p 'Press Enter to

exit...'"

Open a terminal for Saving Map

gnome-terminal -x bash -c "bash

/home/ysc/lite_cog_ros2/system/scripts/slam/save_map.sh; read -p 'Press any key to

exit...'; read -p 'Press Enter to exit...'"

DEEP Robotics

 49 / 57

b) After logging into the perception host desktop using NoMachine and remotely

controlling the robot to stand up, open a Terminal and enter the following

command to start the mapping program using the script:
1

2

cd ~/lite_cog_ros2/system/scripts/slam

./start_slam.sh

c) After executing the above command, four terminal windows will be generated,

respectively for running the script of starting mapping, running the mapping

program, generating the grid map, and saving the grid map (the left window

below is running the LiDAR driver and the right is running the script of starting

mapping):

3. Operate the robot and guide it around the designated area to construct the map.

When taking turns, please slow down. Also, be mindful of LiDAR's blind spots and

keep the robot at a minimum distance of 0.5 meters from any walls.

4. After finishing scanning the designated area, check whether the point cloud map

matches the real environment.

5. Find the corresponding tab page of faster-lio program after completing the map

scanning, press "Ctrl+C" to stop mapping, the program will automatically save the

3D point cloud file (.pcd) to the ~/lite_cog_ros2/system/map directory, and display

the average processing time (for reference only). Press Enter to close this tab page.

DEEP Robotics

 50 / 57

6. After saving the 3D point cloud file (.pcd) successfully, find the tab page as shown in

the following figure, enter 1 and press Enter key. After a while, pcd_2_gridmap

package will be called to convert the point cloud map into a grid map, and the next

step can be carried out when the RViz window pops up and displays the grid map.

DEEP Robotics

 51 / 57

7. After the point cloud map is converted into a grid map, select the Terminal that

displays "when you want to save the grid map". Next, enter the number 2 and press

Enter to call map_server. After that, map files, including .yaml file, .pgm file and .pcd

file, will be saved to ~/lite_cog_ros2/system directory.

8. If the grid map (.pgm) is not completely in line with the actual environment or users

need to manually delimit passable areas, GIMP Image Editor can be used to edit it.

Open a Terminal and type gimp to open GIMP Image Editor and drag the grid map

(.pgm) into it.

DEEP Robotics

 52 / 57

a) Toolbox can be opened by choosing [Windows] – [New Toolbox] in the top menu

bar if it is not displayed.

b) Foreground Color specifies the color of Pencil and Background Color specifies the

color of Eraser. In the grid map, the black area is not passable, the white area is

passable and the gray area is unknown. Users can erase the noise or add a

virtual wall with Pencil or Eraser.

c) Save the modified map by clicking [File] – [Overwrite usr_map.pgm] to cover the

origin file and it is not necessary to save it again when closing the editor.

9. Please close all Terminals with ctrl+c after completing all operations to avoid

affecting subsequent processes.

10. The map files will by default be saved in /home/ysc/lite_cog_ros2/system/map

directory. If the path or name of map files is changed, please follow the steps below

to ensure that localization and navigation program can call the map correctly:

a) Update the path of map file(.pgm) in the corresponding .yaml file, and modify

the file name of .yaml file to keep same with the .pgm file:
1

2

3

image:/home/ysc/lite_cog_ros2/system/map.pgm // path of map file (.pgm)

resolution:0.050000

...

b) Go into the directory ~/lite_cog_ros2/nav/src/hdl_localization/launch and

configure the name and path of map files in the file lite_localization.launch.py.
1

2

3

4

5

6

declare_map_server_config_file_cmd = DeclareLaunchArgument(

 'map_server_config_file',

 default_value=os.path.join(

 '/home/ysc/lite_cog_ros2/system/map/lite3.yaml'

)

)

DEEP Robotics

 53 / 57

7

8

9

10

11

12

...

parameters=[

{"globalmap_pcd": "/home/ysc/lite_cog_ros2/system/map/lite3.pcd"},

...

8.2 Localization & Navigation

This case is based on LiDAR and IMU to implement localization and navigation. The

localization algorithm used in this case is hdl_localization algorithm.

[Caution] The LIDAR driver needs to be running during localization and navigation (refer to

8.1.3).

8.2.1 Usage of Point-to-point Navigation

1. Open a Terminal and enter the following codes to start LiDAR driver (If the lidar

driver has already been started when mapping, there is no need to start it again):
1

2

cd ~/lite_cog_ros2/system/scripts/lidar

./start_lslidar.sh #Leishen Lidar
3 ./start_livox.sh #Livox Lidar

2. Open a terminal and enter the following commands to start the node of navigation:
1

2

cd /home/ysc/lite_cog_ros2/system/scripts/nav

./start_nav.sh

3. After RViz is opened, initialize the robot location:

a) Click the "2D Pose Estimate" button in the top toolbar;

b) According to the actual location and orientation of the robot, press the mouse

left button and drag to pull out an arrow at the corresponding location on the

grid map;

c) If the positioning initialization is successful, the point cloud and grid map will

coincide, and the terminal print "initial pose received!!";

https://github.com/koide3/hdl_localization.git

DEEP Robotics

 54 / 57

d) If the laser point cloud does not coincide with the grid map, the initial position is

not correct, please re-operate；

e) If the point cloud does not appear on the map and the terminal prints

"globalmap has not been received!", please close the program with ctrl+c and

try again.

f) The base_link coordinate system is the robot coordinate system, and the x-axis

(red) indicates the robot orientation.

[RViz Usage Tips] To manipulate the map on RViz, you can zoom in and out by using

the mouse wheel. For rotation, you can drag the left mouse button. Meanwhile, to

pan and drag the map, you need to hold Shift key and drag the left mouse button.

4. After initializing the location, a target point can be given according to a similar

method:

a) Click the "Navigation2 Goal" button in the top toolbar.

b) Press the left mouse button and drag on the grid map to specify a navigation

goal and its orientation.

DEEP Robotics

 55 / 57

c) If successfully specifying a navigation goal, the planned path will be computed

and shown. Else, start again from the first step.

5. Open the auto mode on the app and make the robot stand up, the robot will

navigate along the route computed by the global planning, while using local

planning to avoid dynamic obstacles, until it successfully arrives at the destination.

[Caution] To avoid the robot body being classified as an obstacle, only items that exceed a

certain height will be identified as obstacles.

8.2.2 Usage of Multi-point Navigation

This case also provides the function to make the robot autonomously arrive at a series

of waypoints in order.

[Caution] Before recording a new route, please check if there are any waypoint files saved

before in the/home/ysc/lite_cog_ros2/pipeline/src/pipeline/data folder, and move them to

other folders, to avoid the overwriting.

1. Refer to steps 1 to 3 in 8.2.1 to start the navigation program and initialize the

localization, then open a terminal and run the following commands to start the

pipeline which used for recording a route:
1

2

3

cd ~/lite_cog_ros2/pipeline/src/pipeline

python3 LocationRecorder.py # for opening a Chinese interface(left window below)

python3 LocationRecorder_EN.py # for opening an English interface(right window below)

DEEP Robotics

 56 / 57

2. First the robot should be controlled to arrive at the first waypoint and stand still.

After the point cloud shown in the RViz stops moving, input 1 in the textbox of

[location number]. Then click [get location] and the location and orientation

information of the robot will be printed. Then click [record location] and a record

file named 1.json will appear in /home/ysc/lite_cog_ros2/pipeline/src /data. Then

remotely control the robot to the next waypoint, repeat the above operations until

all the waypoints are recorded, and then close the window. If it is closed

accidentally during recording, just open it again (referring to the first step).

3. Open a terminal, run the following commands, and turn on auto mode on the app.

The robot will go to the nearest waypoint and navigate in a loop according to the

location number.
1

2

cd /home/ysc/lite_cog_ros2/pipeline/src/pipeline

python3 Task.py

4. Thereafter, when used again, only steps 1 and 3 need to be performed to make the

robot navigate in a loop according to the previously recorded target points.

8.3 Development

8.3.1 LiDAR Drivers Development

LiDAR drivers are located in the ~/lite_cog_ros2/driver/leishen_ws and

~/lite_cog_ros2/driver/mid360_ws. Users can read the source code for secondary

development.

DEEP Robotics

 57 / 57

8.3.2 Development of SLAM Mapping

The SLAM mapping program is launched through the file hdl_graph_slam_launch.py in

the /home/ysc/lite_cog_ros2/slam/src/hdl_graph_slam/launch folder, which mainly

includes point cloud preprocessing parameters, point cloud registration algorithm

parameters, and g2o graph optimization algorithm parameters, which can be adjusted

by the user.

8.3.3 Development of Positioning and Navigation

1. Development of Positioning: The localization program is started from the file

lite_localization.launch.py in the ~/lite_cog_ros2/nav/src/hdl_localization/launch

folder, which mainly contains the point cloud preprocessing parameters and point

cloud registration parameters. Users can modify them.

2. Development of Navigation: Users can adjust the parameters in the lite_nav2.yaml

in the ~/lite_cog_ros2/nav/src/dr_nav2/config directory, and the functions of each

parameter can be found in the navigation2.

https://docs.nav2.org/

	1 Perception System
	2 Preparatory Work
	2.1 Remote Desktop
	2.1.1 Connect
	2.1.2 Troubleshooting

	2.2 Connect Perception Host Via HDMI
	2.2.1 Start GUI Automatically on Boot
	2.2.2 Start tty3 Automatically On Boot

	3 Check and Change ROS version
	4 Depth Camera
	4.1 Camera Driver
	4.2 Camera Test
	4.3 Camera Library librealsense
	4.4 Realsense Development (ROS1)
	4.5 Realsense Development (ROS2)

	5 Message Transformer
	5.1 Introduction
	5.2 Usage
	5.2.1 ROS1
	5.2.2 ROS2

	5.3 Package Structure
	5.3.1 ROS1
	5.3.2 ROS2

	6 People Tracking
	6.1 Introduction
	6.2 Usage
	6.3 Development

	7 LiDAR-based SLAM and Navigation (ROS1)
	7.1 Mapping(for v3.1.04 and later)
	7.1.1 Introduction
	7.1.2 Package Structure
	7.1.3 Usage

	7.2 Mapping(for earlier than v3.1.04)
	7.2.1 Introduction
	7.2.2 Package Structure
	7.2.3 Usage

	7.3 Localization & Navigation
	7.3.1 Usage of Point-to-point Navigation
	7.3.2 Usage of Multi-point Navigation

	7.4 Development
	7.4.1 LiDAR Drivers Development
	7.4.2 Development of SLAM Mapping
	7.4.3 Development of Localization and Navigation

	8 LiDAR-based SLAM and Navigation(ROS2)
	8.1 Mapping
	8.1.1 Introduction
	8.1.2 Package Structure
	8.1.3 Usage

	8.2 Localization & Navigation
	8.2.1 Usage of Point-to-point Navigation
	8.2.2 Usage of Multi-point Navigation

	8.3 Development
	8.3.1 LiDAR Drivers Development
	8.3.2 Development of SLAM Mapping
	8.3.3 Development of Positioning and Navigation

